const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
Theorem
Suppose ∣∣⋅∣∣ is a matrix norm on Mn. Then for all A∈Mn, we have ρ(A)≤∣∣A∣∣.
∣∣A∣∣=maxx∣∣x∣∣∣∣A∣∣=λmax
(we simply choose some norm 1 eigenvector of A with the maximum eigenvalue).
If the norm is an induced norm, then the result is trivial:
For any matrix norm, we let x be an eigenvector associated with λ an eigenvalue of maximum modulus. Set B to be the n×n matrix with x as each column. Then
∣∣AB∣∣=∣∣Ax∣Ax∣…∣Ax∣∣=∣∣λB∣∣≤∣∣A∣∣⋅∣∣B∣∣
Since x=0 this implies that B=0⟹∣∣B∣∣=0. Thus we have that
ρ(A)=∣λ∣≤∣∣A∣∣