const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
Matrix Norm
A norm∣∣⋅∣∣ on Mn(K) over K is a matrix norm if for all A,B∈Mn we have
∣∣AB∣∣≤∣∣A∣∣⋅∣∣B∣∣
(this condition is called submultiplicativity)
If, in particular, ∣∣⋅∣∣′ is any norm on Kn and matrices in Mn are Kn,∣∣⋅∣∣′→Kn,∣∣⋅∣∣′, then the operator norm induced by that vector norm∣∣⋅∣∣∣∣⋅∣∣′,∣∣⋅∣∣′ is an induced matrix norm. (We have already shown this)