[[lecture-data]]2024-11-04
Readings
- a
5. Chapter 5
Corollary of Hahn-Banach
Let be a NLS over . If , then there exists such that and
(see Hahn-Banach theorem)
Theorem
Let be a norm on . Then .
. Then by definition of the dual norm. But we have
Let
\max_{y \in K^n, \lvert \lvert y \rvert \rvert^D=1} \lvert y^*x \rvert & \leq \max_{y \in K^n, \lvert \lvert y \rvert \rvert^D= 1 } \lvert \lvert x \rvert \rvert \cdot \lvert \lvert y \rvert \rvert ^D \\ &= \lvert \lvert x \rvert \rvert \\ &\text{ by H-B }, \exists y \in K^n, \lvert \lvert y \rvert \rvert ^D = 1, y^*x = \lvert \lvert x \rvert \rvert \\ \implies \max_{y \in K^n, \lvert \lvert y \rvert \rvert^D=1} \lvert y^*x \rvert &= \max_{y \in K^n, \lvert \lvert y \rvert \rvert^D= 1 } \lvert \lvert x \rvert \rvert \cdot \lvert \lvert y \rvert \rvert ^D \end{aligned}$$ (by [[Concept Wiki/Hahn-Banach theorem]] above)
Theorem
Let be a norm on . For all ,
matrix 1 norm is max column sum and matrix infinity norm is max row sum. But we can also see it via the dual of the dual norm is the original norm.
We can see this in
Proof
By definition, we have
\lvert \lvert A^* \rvert \rvert_{\lvert \lvert \cdot \rvert \rvert^D, \lvert \lvert \cdot \rvert \rvert^D} &= \max_{x \in \lvert \lvert x \rvert \rvert^D = 1} \lvert \lvert A^*x \rvert \rvert^D \\ &= \max_{x : \lvert \lvert x \rvert \rvert ^D = 1} [\max_{y: \lvert \lvert y \rvert \rvert =1} \lvert (A^*x)^*y \rvert ] \\ &= \max_{y: \lvert \lvert y \rvert \rvert =1} \max_{x : \lvert \lvert x \rvert \rvert ^D = 1} \lvert (Ay)^*x \rvert \\ &= \max_{y: \lvert \lvert y \rvert \rvert =1} (\lvert \lvert Ay \rvert \rvert ^D)^D \;\;\;(*) \\ & \max_{y : \lvert \lvert y \rvert \rvert =1} \lvert \lvert Ay \rvert \rvert \\ &= \lvert \lvert A \rvert \rvert _{\lvert \lvert \cdot \rvert \rvert, \lvert \lvert \cdot \rvert \rvert } \end{aligned}$$ - $(*)$ we have $Ay$ is a linear functional. But it is in the dual norm (for the dual norm!) (see [[Concept Wiki/the dual of the dual norm is the original norm]])
Matrix Norm
A norm on over is a matrix norm if for all we have (this condition is called submultiplicity)
If, in particular, is any norm on and matrices in are , then the operator norm induced by that vector norm is an induced matrix norm. (We have already shown this)
,
Where did we already show this? We showed that satisfies
(see matrix norm)
Exercise
is a matrix norm ie NTS
is a matrix norm (frobenius norm)
is NOT a matrix norm
counterexample for (3) matrix of all 1s. Then is the matrix of all 2s.
Consider
Relationship between norms on square matrices
induced matrix norms matrix norms Norms on
- If we can prove convergence for general norm on matrices, then we also have convergence for matrix norms and induced matrix norms
Theorem
Suppose is a matrix norm on . Then for all , we have .
(we simply choose some norm 1 eigenvector of with the maximum eigenvalue).
If the norm is an induced norm, then the result is trivial:
For any matrix norm, we let be an eigenvector associated with an eigenvalue of maximum modulus. Set to be the matrix with as each column. Then Since this implies that . Thus we have that
Preview: we will see next time that