Lecture 27

[[lecture-data]]

2024-11-04

Readings

  • a
 

5. Chapter 5

Corollary of Hahn-Banach

Let be a NLS over . If , then there exists such that and

(see Hahn-Banach theorem)

Theorem

Let be a norm on . Then .

. Then by definition of the dual norm. But we have

Let

\max_{y \in K^n, \lvert \lvert y \rvert \rvert^D=1} \lvert y^*x \rvert & \leq \max_{y \in K^n, \lvert \lvert y \rvert \rvert^D= 1 } \lvert \lvert x \rvert \rvert \cdot \lvert \lvert y \rvert \rvert ^D \\ &= \lvert \lvert x \rvert \rvert \\ &\text{ by H-B }, \exists y \in K^n, \lvert \lvert y \rvert \rvert ^D = 1, y^*x = \lvert \lvert x \rvert \rvert \\ \implies \max_{y \in K^n, \lvert \lvert y \rvert \rvert^D=1} \lvert y^*x \rvert &= \max_{y \in K^n, \lvert \lvert y \rvert \rvert^D= 1 } \lvert \lvert x \rvert \rvert \cdot \lvert \lvert y \rvert \rvert ^D \end{aligned}$$ (by [[Concept Wiki/Hahn-Banach theorem]] above)

(see the dual of the dual norm is the original norm)

Theorem

Let be a norm on . For all ,

We can see this in

Proof

By definition, we have

\lvert \lvert A^* \rvert \rvert_{\lvert \lvert \cdot \rvert \rvert^D, \lvert \lvert \cdot \rvert \rvert^D} &= \max_{x \in \lvert \lvert x \rvert \rvert^D = 1} \lvert \lvert A^*x \rvert \rvert^D \\ &= \max_{x : \lvert \lvert x \rvert \rvert ^D = 1} [\max_{y: \lvert \lvert y \rvert \rvert =1} \lvert (A^*x)^*y \rvert ] \\ &= \max_{y: \lvert \lvert y \rvert \rvert =1} \max_{x : \lvert \lvert x \rvert \rvert ^D = 1} \lvert (Ay)^*x \rvert \\ &= \max_{y: \lvert \lvert y \rvert \rvert =1} (\lvert \lvert Ay \rvert \rvert ^D)^D \;\;\;(*) \\ & \max_{y : \lvert \lvert y \rvert \rvert =1} \lvert \lvert Ay \rvert \rvert \\ &= \lvert \lvert A \rvert \rvert _{\lvert \lvert \cdot \rvert \rvert, \lvert \lvert \cdot \rvert \rvert } \end{aligned}$$ - $(*)$ we have $Ay$ is a linear functional. But it is in the dual norm (for the dual norm!) (see [[Concept Wiki/the dual of the dual norm is the original norm]])

Matrix Norm

A norm on over is a matrix norm if for all we have (this condition is called submultiplicity)

If, in particular, is any norm on and matrices in are , then the operator norm induced by that vector norm is an induced matrix norm. (We have already shown this)

,

Where did we already show this? We showed that satisfies

(see matrix norm)

Exercise

  1. is a matrix norm ie NTS

  2. is a matrix norm (frobenius norm)

  3. is NOT a matrix norm

counterexample for (3) matrix of all 1s. Then is the matrix of all 2s.

Consider

Relationship between norms on square matrices

induced matrix norms matrix norms Norms on

  • If we can prove convergence for general norm on matrices, then we also have convergence for matrix norms and induced matrix norms

Theorem

Suppose is a matrix norm on . Then for all , we have .

(we simply choose some norm 1 eigenvector of with the maximum eigenvalue).

If the norm is an induced norm, then the result is trivial:

For any matrix norm, we let be an eigenvector associated with an eigenvalue of maximum modulus. Set to be the matrix with as each column. Then Since this implies that . Thus we have that

(see matrix norms are bounded below by the spectral radius)

Preview: we will see next time that