const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
Corollary
For all A∈Mn define eA=∑i=0∞i!1Ai. This is well-defined. (see matrix exponential)
∣∣⋅∣∣ be any matrix norm. Then
∑i=0∞i!1Ai≤∑i=0∞i!1∣∣A∣∣i=e∣∣A∣∣
Let
by homogeneity and submultiplicity
When i=0 : can I say that ∣∣A0∣∣≤∣∣A∣∣0=1 ? Well, no. But it still converges. (as long as n is finite). I can also choose an induced matrix norm and using norm equivalence it is ok :)