[[concept]]Banach Space
A normed space is a Banach space if it is complete with respect to the metric induced by the norm.
ie, Cauchy sequences in the space converge in the space.
Example
is not complete, but is. are complete wrt any of the norms.
Mentions
Mentions
TABLE file.mday as "Last Modified" FROM [[]] FLATTEN choice(contains(artist, this.file.link), 1, "") + choice(contains(author, this.file.link), 1, "") + choice(contains(director, this.file.link), 1, "") + choice(contains(source, this.file.link), 1, "") as direct_source WHERE !direct_source SORT file.mday ASC SORT file.name ASC
const { dateTime } = await cJS()
return function View() {
const file = dc.useCurrentFile();
return <p class="dv-modified">Created {dateTime.getCreated(file)} ֍ Last Modified {dateTime.getLastMod(file)}</p>
}