Banach space

[[concept]]

Banach Space

A normed space is a Banach space if it is complete with respect to the metric induced by the norm.

ie, Cauchy sequences in the space converge in the space.

Example

is not complete, but is. are complete wrt any of the norms.

Mentions

Mentions

TABLE file.mday as "Last Modified"
FROM [[]]
 
FLATTEN choice(contains(artist, this.file.link), 1, "") + choice(contains(author, this.file.link), 1, "") + choice(contains(director, this.file.link), 1, "") + choice(contains(source, this.file.link), 1, "") as direct_source
 
WHERE !direct_source
SORT file.mday ASC
SORT file.name ASC
const { dateTime } = await cJS()
 
return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}