\sum_{n=1}^m \lvert \lvert T_{n}v \rvert \rvert &\leq \sum_{n=1}^m \lvert \lvert T_{n} \rvert \rvert\cdot \lvert \lvert v \rvert \rvert \\
&\leq \lvert \lvert v \rvert \rvert \sum_{n} \lvert \lvert T_{n} \rvert \rvert \\
&= C \lvert \lvert v \rvert \rvert
\end{align}$$
ie, the sequence of (nonnegative, real) partial sums $\left\{ \sum_{n=1}^m \lvert \lvert T_{n}v \rvert \rvert \right\}$ is bounded and therefore **converges**.
Thus the series $\sum_{n}T_{n}v$ is [[Concept Wiki/summable series\|absolutely summable]] in $W$. Since $W$ is [[Concept Wiki/Banach space\|Banach]], (and [[Concept Wiki/banach spaces have all absolutely summable series are summable]]), we know that $\sum_{n}T_{n}v$ is [[Concept Wiki/summable series\|summable]].
So define our candidate limit T:V→W as
Tv:=limm→∞∑n=1mTnv
We now need to show that this is a bounded linear operator.
T is linear
For all λ1,λ2∈K and v1,v2∈V, we have
T(\lambda_{1}v_{1}+\lambda_{2}v_{2}) &= \lim_{ m \to \infty } \sum_{n=1}^m T_{n}(\lambda_{1}v_{1}+\lambda_{2}v_{2}) \\
(*)&= \lim_{ m \to \infty }\left[ \lambda_{1} \sum_{n=1}^m T_{n} v_{1} + \lambda_{2}\sum_{n=1}^m T_{n} v_{2} \right]\quad \\
&= \lambda_{1} Tv_{1} + \lambda_{2} Tv_{2}
\end{align}$$
> [!NOTE]
> For $(*)$, we did not prove that the sum of the limit is the limit of the sums, but it is the same proof as the case in $\mathbb{R}$ replacing absolute value with the appropriate norm instead.
>