Suppose Q=εB where ε∈{±1} and B is a fixed symmetricd×d matrix. Then
E[eλQ]=∑k=0∞(2k)!λ2kB2k⪯∑k=1∞k!1(2λ2B2)k=eλ2B2/2
Thus Q is subgaussian with V=B2=Var(Q)
More generally, if Q=gB where g is σ2subgaussian with mean 0, then v=σ2B2
Example
Now consider, Q=εC, where C∈Sd×d is a random matrix and ε∈{±1}. Suppose the spectral norm∣∣C∣∣2≤b. Then, fixing C, we see that
\mathbb{E}_{\varepsilon}\left[e^{\lambda\varepsilon C}\right] &\preceq \exp\left( \frac{\lambda^2}{2}C^2 \right) \\
\lvert \lvert C \rvert \rvert _{2} \leq b \implies \exp\left( \frac{\lambda^2}{2}C^2 \right) &\preceq \exp\left( \frac{\lambda^2}{2}b^2 I \right) \\
\implies \Psi_{Q}(\lambda) &\preceq \exp\left( \frac{\lambda^2}{2}b^2 I \right)\quad \forall\,\lambda \in \mathbb{R}
\end{align}$$
ie, $Q$ is a [[subgaussian matrix]] with $V = b^2I$