subgaussian

[[concept]]

Topics

const fieldName = "theme"; // Your field with links
const oldPrefix = "Thoughts/01 Themes/";
const newPrefix = "Digital Garden/Topics/";
 
const relatedLinks = dv.current()[fieldName];
 
if (Array.isArray(relatedLinks)) {
    // Map over the links, replace the path, and output only clickable links
    dv.el("span",
        relatedLinks
            .map(link => {
                if (link && link.path) {
                    let newPath = link.path.startsWith(oldPrefix)
                        ? link.path.replace(oldPrefix, newPrefix)
                        : link.path;
                    return dv.fileLink(newPath);
                }
            })
            .filter(Boolean).join(", ") 
	// Remove any undefined/null items
    );
} else {
    dv.el(dv.current().theme);
}
 
 

Definition

Vectors

If is mean-zero subgaussian, then

Matrices

Sub-Gaussian Matrix

A zero-mean symmetric random matrix is sub-Gaussian with parameter (positive) if Where is the moment generating function.

Example

Suppose where and is a fixed symmetric matrix. Then Thus is subgaussian with

More generally, if where is subgaussian with mean 0, then

Example

Now consider, , where is a random matrix and . Suppose the spectral norm . Then, fixing , we see that

\mathbb{E}_{\varepsilon}\left[e^{\lambda\varepsilon C}\right] &\preceq \exp\left( \frac{\lambda^2}{2}C^2 \right) \\ \lvert \lvert C \rvert \rvert _{2} \leq b \implies \exp\left( \frac{\lambda^2}{2}C^2 \right) &\preceq \exp\left( \frac{\lambda^2}{2}b^2 I \right) \\ \implies \Psi_{Q}(\lambda) &\preceq \exp\left( \frac{\lambda^2}{2}b^2 I \right)\quad \forall\,\lambda \in \mathbb{R} \end{align}$$ ie, $Q$ is a [[subgaussian matrix]] with $V = b^2I$

References

References

High-Dimensional Statistics - A Non-Asymptotic Viewpoint

  • pg 25, Theorem 2.6 (equivalent defintions)

See Also

Mentions

Mentions

const modules = await cJS()
 
const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  
const { dateTime } = await cJS()
 
return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}