const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
The moment generating function (MGF) of a random variable, random vector, or random matrix is a function that defines the moments the variable according to its distribution.
Like the PMF or PDF, the MGF of a distribution is unique, meaning that distributions can be characterized by this function.
Definition
Random Matrices
The moment generating function of a symmetricrandom matrix, denoted ΨQ:R→Sd×d, is given by
ΨQ(λ):=E[eλQ]=∑k=0∞k!λkE[Qk]