const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
Theorem
If f,g∈L+(E) then
∫E(f+g)=∫Ef+∫Eg
Proof
Let {φn}n and {ψn}n be two sequences of simple functions such that
0≤φ1≤φ2≤⋯≤f with φn→f and
o≤ψ1≤ψ2≤⋯≤g with ψn→g pointwise then
0≤φ1+ψ1≤φ2+ψ2≤⋯≤f+g
Where φn+ψn→f+g pointwise and each φi+ψi are simple (since they are the sum of simple functions). So by the Monotone Convergence Theorem and linearity for simple functions we have