[[concept]]Topics
const fieldName = "theme"; // Your field with links const oldPrefix = "Thoughts/01 Themes/"; const newPrefix = "Digital Garden/Topics/"; const relatedLinks = dv.current()[fieldName]; if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items ); } else { dv.el(dv.current().theme); }
Theorem
Let be a sequence in . Then
Proof
via induction. Since the lebesgue integral of sum is sum of the integral, we know for each that And since and as , by the Monotone Convergence Theorem we have
\int _{E} \sum_{n=1}^\infty &= \lim_{ N \to \infty } \int _{E} \sum_{n=1}^N f_{n} \\ &= \lim_{ N \to \infty } \sum_{n=1}^N \int _{E} f_{n} \\ &= \sum_{n=1}^\infty \int _{E} f_{n} \end{align}$$ $$\tag*{$\blacksquare$}$$
NOTE
this does not hold for Riemann integration. Enumerate the rationals and let be the function that is 1 for the first rational numbers and 0 everywhere else
References
References
See Also
Mentions
Mentions
const modules = await cJS() const COLUMNS = [ { id: "Name", value: page => page.$link }, { id: "Last Modified", value: page => modules.dateTime.getLastMod(page) }, ]; return function View() { const current = dc.useCurrentFile(); // Selecting `#game` pages, for example. let queryString = `@page and linksto(${current.$link})`; let pages = dc.useQuery(queryString); // check types pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort() return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>; }
const { dateTime } = await cJS()
return function View() {
const file = dc.useCurrentFile();
return <p class="dv-modified">Created {dateTime.getCreated(file)} ֍ Last Modified {dateTime.getLastMod(file)}</p>
}