graphon shift operator

[[concept]]
The graphon shift operator

Let W be a graphon and x a graphon signal. The graphon shift operator is the integral linear operator TW:L2([0,1])L2([0,1]) which maps xTWx

TWx=01W(u,)x(u)dx
Note

A graphon shift operator is a Hilbert-Schmidt integral operator (continuous and compact) because graphons are bounded

WLWL2

And has Hilbert-Schmidt norm

||TW||HS2=||W||22=0101W2(u,v)dudv

Review

#flashcards/math/dsg

A graphon shift operator is a {ass||Hilbert-Schmidt integral operator||type}(ie it is {hah||continuous and compact}) because {hha||graphons are bounded on closed subset of R2||why type}

Graphon shift operators are also {as||self-adjoint||special property} because graphons are {ha||symmetric||why}.

Mentions

Mentions

const modules = await cJS()

const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  

const { dateTime } = await cJS()

return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}