const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
Theorem
Let v∈V and define Tv:V′→C via
Tv(v′)=v′(v)
Then the map T:V→V′′ where v↦Tv is isometric
Proof
Define Tv:V′→C by
Tv(v′)=v′v,v′∈V′
We’ve shown already that v↦Tv∈B(V,V′′) (see this example)
Clearly Tv is linear
Tv is bounded since
∣Tv(v′)∣=∣v′(v)∣≤∣∣v′∣∣×constant∣∣v∣∣⟹Tv∈(V′)′=V′′
Thus we can see ∣∣Tv∣∣≤∣∣v∣∣
What is left is to show is that it is isometric, ie that ∣∣Tvv∣∣=∣∣v∣∣
Since ∣∣Tv∣∣≤∣∣v∣∣, we know that ∣∣T∣∣≤1. Now we show for all v∈V that ∣∣Tvv∣∣=∣∣v∣∣
Let v∈V∖{0}. Then by the corollary of Hahn-Banach, there exists f∈V′ such that ∣∣f∣∣=1 and f(v)=∣∣v∣∣. Then
∣∣v∣∣=∣f(v)∣≤∣∣Tv∣∣×∣∣f∣∣=∣∣Tv∣∣
Thus ∣∣Tv∣∣=∣∣v∣∣. Thus the map is indeed isometric.