const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
Matrix Analysis
Corollary of Hahn-Banach
Let V,∣∣⋅∣∣ be a NLS over K. If x∈V, then there exists f∈V∗ such that ∣∣f∣∣V∗=1 and f(x)=∣∣x∣∣V
(without proof)
Functional Analysis
Theorem
if V is a normed space, then for all v∈V∖{0}, there exists f∈V′ such that
\lvert \lvert f \rvert \rvert &=1 \\
f(v) &= \lvert \lvert v \rvert \rvert
\end{align}$$
Proof
Define u:Cv→C as u(λv)=λ∣∣v∣∣. Then ∣u(t)∣≤∣∣t∣∣ for all t∈Cv and also u(v)=∣∣v∣∣. Thus, by the Hahn-Banach theorem, there exists some f∈V′ that extends u, ie f(v)=u(v)=∣∣v∣∣ . But then
Then
∣∣f(t)∣∣≤∣∣t∣∣ for all t∈V, ie
1=f(∣∣v∣∣v)≤∣∣f∣∣⟹∣∣f∣∣=1