[[concept]]Topics
const fieldName = "theme"; // Your field with links const oldPrefix = "Thoughts/01 Themes/"; const newPrefix = "Digital Garden/Topics/"; const relatedLinks = dv.current()[fieldName]; if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items ); } else { dv.el(dv.current().theme); }
Theorem
If is a sequence in such that for almost all and
f_{1}(x) \leq f_{2}(x) \leq f_{3}(x)\dots \\ \lim_{ n \to \infty } f_{n}(x) = f(x) \end{cases}$$ Then $$\int _{E} f = \lim_{ n \to \infty } \int _{E} f_{n}$$
Proof
Let Then by assumption. Thus a.e. and a.e. also. Then the Monotone Convergence Theorem says Where the first equality holds since function relations almost everywhere hold in the integral and the last holds by the Monotone Convergence Theorem. This then becomes Because and so any integral over the region is 0.
ie, sets of measure zero do not affect the Lebesgue Integral.
References
References
See Also
Mentions
Mentions
const modules = await cJS() const COLUMNS = [ { id: "Name", value: page => page.$link }, { id: "Last Modified", value: page => modules.dateTime.getLastMod(page) }, ]; return function View() { const current = dc.useCurrentFile(); // Selecting `#game` pages, for example. let queryString = `@page and linksto(${current.$link})`; let pages = dc.useQuery(queryString); // check types pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort() return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>; }
const { dateTime } = await cJS()
return function View() {
const file = dc.useCurrentFile();
return <p class="dv-modified">Created {dateTime.getCreated(file)} ֍ Last Modified {dateTime.getLastMod(file)}</p>
}