separable Hilbert spaces are bijective with ell-2

[[concept]]

Topics

const fieldName = "theme"; // Your field with links
const oldPrefix = "Thoughts/01 Themes/";
const newPrefix = "Digital Garden/Topics/";
 
const relatedLinks = dv.current()[fieldName];
 
if (Array.isArray(relatedLinks)) {
    // Map over the links, replace the path, and output only clickable links
    dv.el("span",
        relatedLinks
            .map(link => {
                if (link && link.path) {
                    let newPath = link.path.startsWith(oldPrefix)
                        ? link.path.replace(oldPrefix, newPrefix)
                        : link.path;
                    return dv.fileLink(newPath);
                }
            })
            .filter(Boolean).join(", ") 
	// Remove any undefined/null items
    );
} else {
    dv.el(dv.current().theme);
}
 
 

Theorem

If is an infinite-dimensional separable Hilbert space, then is isometrically isomorphic to .

ie, there exists a bijective bounded linear operator such that for all we have

The finite case is easier to deal with- we can just show that they are isometrically isomorphic to for some

Proof (sketch)

Since is separable, it has an orthonormal basis (Hilbert spaces are separable if and only if they have an orthonormal basis). And we can write the Fourier-Bessel series for each element :

u &= \sum_{n=1}^\infty \langle u, e_{n} \rangle e_{n} \\ \implies \lvert \lvert u \rvert \rvert &= \left( \sum_{n=1}^\infty \lvert \langle u, e_{n} \rangle \rvert^2 \right)^{1/2} \end{align}$$ By [[Concept Wiki/Parseval's identity]]. So we can define our map $T$ as $$T\,u := \{ \langle u, e_{n} \rangle \}_{n}$$ ie, $T\,u$ is the sequence of coefficients in the expansion. And this sequence is in $\ell^2$ ([[Concept Wiki/l-p vector space\|ell-2]]). - $T$ is [[Concept Wiki/linear function\|linear]] by construction, - It is [surjective](https://en.wikipedia.org/wiki/Surjective_function) because every sum $\sum_{n=1}^\infty c_{n }e_{n}$ is Cauchy in $H$ - It is [one-to-one](https://en.wikipedia.org/wiki/Injective_function) because every $u$ is expanded in this way, so any two expansions that are the same will be have the same infinite sum.

References

References

See Also

Mentions

Mentions

const modules = await cJS()
 
const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  
const { dateTime } = await cJS()
 
return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}