Thus if we have an orthonormal basis, every element can be expanded in this series in terms of the basis elements (called a Bessel-Fourier series). And thus every separable Hilbert space has an orthonormal basis.
NOTE
ie like in finite-dimensional linear algebra, we can write any element as a linear combination of the basis elements. But in this space, there might be an infinite number of such elements.
First, we prove {∑n=1m⟨u,en⟩en}m is Cauchy. Let ϵ>0. Then by Bessel’s inequality, we have
∑n=1∞∣⟨u,en⟩∣2≤∣∣u∣∣2<∞
Thus, for all M∈N such that for all N≥M we have ∑m=N+1∞∣⟨u,en⟩∣2<ϵ
Then for all m>ℓ≥M we compute
\left\lvert \left\lvert \sum_{n=1}^m \langle u, e_{n} \rangle e_{n} - \sum_{n=1}^\ell \langle u, e_{n} \rangle e_{n} \right\rvert \right\rvert &= \sum_{n=\ell+1}^m \lvert \langle u, e_{n} \rangle \rvert ^2 \\
&\leq \sum_{\ell+1}^\infty \lvert \langle u, e_{n} \rangle \rvert ^2 \\
&< \epsilon^2
\end{align}$$
thus the sequence is indeed Cauchy. Since $H$ is complete, there exists some $\bar{u}\in H$ where
$$\bar{u} = \lim_{ m \to \infty } \sum_{n=1}^m \langle u, e_{n} \rangle e_{n}$$
By [[continuity of inner product]], we know that for all $\ell \in \mathbb{N}$
$$\begin{align}
\langle u-\bar{u}, e_{\ell} \rangle &= \lim_{ m \to \infty } \left\langle u - \sum_{n=1}^m \langle u, e_{n} \rangle e_{n}, e_{\ell} \right\rangle \\
&= \lim_{ m \to \infty } \left[ \langle u, e_{\ell} \rangle - \sum_{n=1}^m \langle u, e_{n} \rangle \langle e_{n}, e_{\ell} \rangle \right] \\
&= \langle u, e_{\ell} \rangle - \langle u, e_{\ell}\cdot 1 \rangle \\
&= 0
\end{align}$$
Thus $\langle u-\bar{u}, e_{\ell} \rangle = 0$ for all $\ell$ if and only if $u - \bar{u} = 0$.
$$\tag*{$\blacksquare$}$$