all elements of hilbert spaces with orthonormal bases can be written as sums of the basis elements

[[concept]]

Topics

const fieldName = "theme"; // Your field with links
const oldPrefix = "Thoughts/01 Themes/";
const newPrefix = "Digital Garden/Topics/";
 
const relatedLinks = dv.current()[fieldName];
 
if (Array.isArray(relatedLinks)) {
    // Map over the links, replace the path, and output only clickable links
    dv.el("span",
        relatedLinks
            .map(link => {
                if (link && link.path) {
                    let newPath = link.path.startsWith(oldPrefix)
                        ? link.path.replace(oldPrefix, newPrefix)
                        : link.path;
                    return dv.fileLink(newPath);
                }
            })
            .filter(Boolean).join(", ") 
	// Remove any undefined/null items
    );
} else {
    dv.el(dv.current().theme);
}
 
 

Theorem

If is an orthonormal basis of a hilbert space , then for all we have

Note

Thus if we have an orthonormal basis, every element can be expanded in this series in terms of the basis elements (called a Bessel-Fourier series). And thus every separable Hilbert space has an orthonormal basis.

NOTE

ie like in finite-dimensional linear algebra, we can write any element as a linear combination of the basis elements. But in this space, there might be an infinite number of such elements.

First, we prove is Cauchy. Let . Then by Bessel’s inequality, we have Thus, for all such that for all we have

Then for all we compute

\left\lvert \left\lvert \sum_{n=1}^m \langle u, e_{n} \rangle e_{n} - \sum_{n=1}^\ell \langle u, e_{n} \rangle e_{n} \right\rvert \right\rvert &= \sum_{n=\ell+1}^m \lvert \langle u, e_{n} \rangle \rvert ^2 \\ &\leq \sum_{\ell+1}^\infty \lvert \langle u, e_{n} \rangle \rvert ^2 \\ &< \epsilon^2 \end{align}$$ thus the sequence is indeed Cauchy. Since $H$ is complete, there exists some $\bar{u}\in H$ where $$\bar{u} = \lim_{ m \to \infty } \sum_{n=1}^m \langle u, e_{n} \rangle e_{n}$$ By [[continuity of inner product]], we know that for all $\ell \in \mathbb{N}$ $$\begin{align} \langle u-\bar{u}, e_{\ell} \rangle &= \lim_{ m \to \infty } \left\langle u - \sum_{n=1}^m \langle u, e_{n} \rangle e_{n}, e_{\ell} \right\rangle \\ &= \lim_{ m \to \infty } \left[ \langle u, e_{\ell} \rangle - \sum_{n=1}^m \langle u, e_{n} \rangle \langle e_{n}, e_{\ell} \rangle \right] \\ &= \langle u, e_{\ell} \rangle - \langle u, e_{\ell}\cdot 1 \rangle \\ &= 0 \end{align}$$ Thus $\langle u-\bar{u}, e_{\ell} \rangle = 0$ for all $\ell$ if and only if $u - \bar{u} = 0$. $$\tag*{$\blacksquare$}$$

References

References

See Also

Mentions

Mentions

const modules = await cJS()
 
const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  
const { dateTime } = await cJS()
 
return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}