normalized gaussian random matrix preserves geometry in expectation

[[concept]]

Topics

const fieldName = "theme"; // Your field with links
const oldPrefix = "Thoughts/01 Themes/";
const newPrefix = "Digital Garden/Topics/";
 
const relatedLinks = dv.current()[fieldName];
 
if (Array.isArray(relatedLinks)) {
    // Map over the links, replace the path, and output only clickable links
    dv.el("span",
        relatedLinks
            .map(link => {
                if (link && link.path) {
                    let newPath = link.path.startsWith(oldPrefix)
                        ? link.path.replace(oldPrefix, newPrefix)
                        : link.path;
                    return dv.fileLink(newPath);
                }
            })
            .filter(Boolean).join(", ") 
	// Remove any undefined/null items
    );
} else {
    dv.el(dv.current().theme);
}
 
 

Important

Let and . Now, define Then

\mathbb{E}[\,\lvert \lvert \hat{G}y \rvert \rvert ^2\,] &= \lvert \lvert y \rvert \rvert ^2 \\ \mathbb{E}[\,\langle \hat{G}y_{1}, \hat{G}y_{2} \rangle \,] &= \langle y_{1}, y_{2} \rangle \\ \mathbb{E}\left[ \,(\hat{G}Y)^{\intercal}(\hat{G}Y)\, \right] &= Y^{\intercal}Y \end{align}$$ ie, in expectation, $\hat{G}$ preserves the lengths, angles, and [[Concept Wiki/Gram matrix\|Gram matrices]]. That is, it preserves all the geometry of $\mathbb{R}^m$

Line of Reasoning

Note that for any column of , say , we have

Expected Magnitude

\mathbb{E}[\lvert \lvert Gy \rvert \rvert ^2] &= \mathrm{Tr}(\text{Cov}(Gy) ) \\ &= d \lvert \lvert y \rvert \rvert ^2 \end{align}$$

and for any columns of

Expected Direction

\mathbb{E}[\langle Gy_{1}, Gy_{2} \rangle] &= \mathrm{Tr}(\text{Cov}(Gy_{1}, Gy_{2}) ) \\ &= d\langle y_{1},y_{2} \rangle \end{align}$$

And, looking at the Gram matrix,

Expected Gram Matrix

Caveats

NOTE

Note that this holds for any , including and . This is because we are taking expectations.

If is selected first before we realize , then we hope that will concentrate about . Our calculations for the joint show that So (with rescaling, obviously), our concentration inequality for magnitude of standard gaussian random vector holds and we should see the desired behavior.

If does not depend on

Assuming we ensure , the probability of actually preserving geometry depends on .

, then for some . We still have But clearly cannot hold simultaneously for many regardless of if we choose them before realizing .

If

Exercise

Construct some examples of this case

If depends on ...

If , then once is realized, we can pick so that .

  • In this case, will not preserve the geometry of arbitrary vectors .
  • In particular, we can find vectors that depend on such that the geometry is badly distorted.

Review

rmt

Normalized gaussian random matrices preserve geometry (in expectation), BUT

Assuming we ensure , the probability of {1||preserving geometry} depends on {==2||the “output” dimension ==}.

For and , what is the (co)variance matrix of ? -?-

If , why do we need to be independent of to preserve geometry if ? -?- Otherwise, we can choose and then the norm is not preserved.

References

References

See Also

Mentions

Mentions

const modules = await cJS()
 
const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  
const { dateTime } = await cJS()
 
return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}