So let {En} be a countable collection of disjoint measurable sets with E=⋃nEn. Then since the other half is always satisfied via monotonicity, we just need to show m∗(A∩Ec)+m∗(A∩E)≤m∗(A)
Let N∈N. Since M is an algebra, the union ⋃n=1NEn∈M so we have
m∗(A)=m∗(A∩[⋃n=1NEn])+m∗(A∩[⋃n=1NEn]c)
And since ⋃n=1NEn⊂E, we have Ec⊂[⋃n=1NEn]c. Thus we have
m^*(A) &= m^*\left( A \cap \left[ \bigcup_{n=1}^N E_{n} \right] \right)+m^*\left( A \cap \left[ \bigcup_{n=1}^N E_{n}\right]^c \right) \\
&\geq m^*\left( A \cap \left[ \bigcup_{n=1}^N E_{n} \right] \right) + m^*(A \cap E^c)
\end{align}$$
And since the [[Concept Wiki/measure of finite disjoint measurable sets is the sum of the measures]], we get
$$\begin{align}
m^*(A) &\geq \sum_{n=1}^N m^*(A \cap E_{n}) + m^*(A \cap E^c) \\
(N\to \infty )&\geq \sum_{n=1}^\infty m^*(A \cap E_{n}) + m^*(A \cap E^c) \\
(*) &\geq m^*\left( \bigcup_{n} A \cap E_{n} \right) + m^*(A \cap E^c) \\
&= m^*(A \cap E) + m^*(A \cap E^c)
\end{align}$$
Where $(*)$ is from [[Concept Wiki/outer measure has countable subadditivity\|countable subadditivity]].
$$\tag*{$\blacksquare$}$$