measurable sets form a sigma algebra

[[concept]]

Topics

const fieldName = "theme"; // Your field with links
const oldPrefix = "Thoughts/01 Themes/";
const newPrefix = "Digital Garden/Topics/";
 
const relatedLinks = dv.current()[fieldName];
 
if (Array.isArray(relatedLinks)) {
    // Map over the links, replace the path, and output only clickable links
    dv.el("span",
        relatedLinks
            .map(link => {
                if (link && link.path) {
                    let newPath = link.path.startsWith(oldPrefix)
                        ? link.path.replace(oldPrefix, newPrefix)
                        : link.path;
                    return dv.fileLink(newPath);
                }
            })
            .filter(Boolean).join(", ") 
	// Remove any undefined/null items
    );
} else {
    dv.el(dv.current().theme);
}
 
 

Theorem

The collection of measurable sets is a sigma-algebra

NOTE

We want measurable sets to form a sigma algebra based on the desirable properties for measure:

Properties we want for this idea

  1. is defined for all

  2. if is an interval then the “length” of

  3. If is a (countable) collection of disjoint subsets of such that , then we want

  4. Translation invariance. ie, if and , then

In particular, in order to get (3), we need to be able to define measure on any countable disjoint union.

Proof

We already know that is an algebra, and we know since algebras have closure under finite disjoint countable unions that we just need to check countable disjoint unions are measurable.

So let be a countable collection of disjoint measurable sets with . Then since the other half is always satisfied via monotonicity, we just need to show

Let . Since is an algebra, the union so we have And since , we have . Thus we have

m^*(A) &= m^*\left( A \cap \left[ \bigcup_{n=1}^N E_{n} \right] \right)+m^*\left( A \cap \left[ \bigcup_{n=1}^N E_{n}\right]^c \right) \\ &\geq m^*\left( A \cap \left[ \bigcup_{n=1}^N E_{n} \right] \right) + m^*(A \cap E^c) \end{align}$$ And since the [[Concept Wiki/measure of finite disjoint measurable sets is the sum of the measures]], we get $$\begin{align} m^*(A) &\geq \sum_{n=1}^N m^*(A \cap E_{n}) + m^*(A \cap E^c) \\ (N\to \infty )&\geq \sum_{n=1}^\infty m^*(A \cap E_{n}) + m^*(A \cap E^c) \\ (*) &\geq m^*\left( \bigcup_{n} A \cap E_{n} \right) + m^*(A \cap E^c) \\ &= m^*(A \cap E) + m^*(A \cap E^c) \end{align}$$ Where $(*)$ is from [[Concept Wiki/outer measure has countable subadditivity\|countable subadditivity]]. $$\tag*{$\blacksquare$}$$

References

References

See Also

Mentions

Mentions

const modules = await cJS()
 
const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  
const { dateTime } = await cJS()
 
return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}