[[concept]]Definition
Matrix Analysis
norm
For over the norm for is defined as
- When this is the “manhattan norm”
- When this is the euclidean norm
Functional Analysis
space
is the space of (infinite) sequences. We define the norm as
(\sum_{i=1}^\infty \lvert a_{i} \rvert^p)^{1/p}\quad\quad 1 \leq p <\infty \\ \sup_{1 \leq j < \infty} \lvert a_{j} \rvert\qquad\,\,\; p = \infty \end{cases} $$
Example
but not for
References
References
See Also
Mentions
Mentions
const modules = await cJS() const COLUMNS = [ { id: "Name", value: page => page.$link }, { id: "Last Modified", value: page => modules.dateTime.getLastMod(page) }, ]; return function View() { const current = dc.useCurrentFile(); // Selecting `#game` pages, for example. let queryString = `@page and linksto(${current.$link})`; let pages = dc.useQuery(queryString); // check types pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort() return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>; }
const { dateTime } = await cJS()
return function View() {
const file = dc.useCurrentFile();
return <p class="dv-modified">Created {dateTime.getCreated(file)} ֍ Last Modified {dateTime.getLastMod(file)}</p>
}