infinity norm for continuous bounded function space

[[concept]]

Proposition

Then is a vector space and we can define the norm on

Proof

NTS that this is indeed a norm by verifying each of the properties. identifiability and homogeneity are satisfied from the definition of the norm. It suffices then to show that the triangle inequality holds.

If then for all

\lvert u(x)+v(x) \rvert &\leq \lvert u(x) \rvert + \lvert v(x) \rvert \quad \text{by }\triangle \text{ inequality} \\ &\leq \lvert \lvert u \rvert \rvert_{\infty} + \lvert \lvert v \rvert \rvert_{\infty} \\ \implies \lvert \lvert u + v \rvert \rvert_{\infty } &=\sup_{x \in X} \lvert u(x) + v(x) \rvert \\ &\leq \lvert \lvert u \rvert \rvert_{\infty} + \lvert \lvert v \rvert \rvert_{\infty} \end{align}$$

NOTE

Convergence in this norm means

u_{n} \to u \text{ in }C_{\infty}(X) &\iff \lvert \lvert u_{n} -u \rvert \rvert_{\infty} \to 0 \text{ as } n \to \infty \\ &\iff \forall \epsilon > 0, \, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N, \forall x \in X, \lvert u_{n}(x) - u(x) \rvert < \epsilon \\ &\iff u_{n} \to u \text{ uniformly on } X \end{align}$$ Thus convergence in this [[Concept Wiki/distance\|metric]] is uniform convergence when the functions $u$ are bounded and continuous.

Mentions

Mentions

TABLE file.mday as "Last Modified"
FROM [[]]
 
FLATTEN choice(contains(artist, this.file.link), 1, "") + choice(contains(author, this.file.link), 1, "") + choice(contains(director, this.file.link), 1, "") + choice(contains(source, this.file.link), 1, "") as direct_source
 
WHERE !direct_source
SORT file.mday ASC
SORT file.name ASC
const { dateTime } = await cJS()
 
return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}