const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
Theorem
Let f∈L+(E) and let ∫Ef<∞. Then the set
F={x∈E:f(x)=∞}
must have measure 0.
Proof
We know for all n∈N we have
nχF≤fχF
So integrating both sides gives us
nm(F)≤∫EfχF≤∫Ef≤∞
Thus for all n, we have m(F)≤n1∫Ef. Taking n→∞, we have m(F)=0.