const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
Theorem (Fatou's Lemma)
Let {fn}n be a sequence in L+(E). Then
∫Elimn→∞inffn(x)dx≤limn→∞inf∫fn(x)dx
Recall limn→∞infan=supn≥1[infk≥nak]
And the limn→∞inf function is defined pointwise
Proof
We have
\lim_{ n \to \infty } \inf f_{n}(x) &= \sup_{n \geq 1} [\inf_{k \geq n} f_{k}(x)] \\
&= \lim_{ n \to \infty } [\inf_{k \geq n} f_{k}(x)]
\end{align}$$
And since $\inf_{k \geq 1} f_{k}(x) \leq \inf_{k \geq 2} f_{k} \leq\dots$ by the [[Concept Wiki/Monotone Convergence Theorem\|MCT]] we have
$$\int _{E} \lim_{ n \to \infty } \inf f_{n} = \lim_{ n \to \infty } \int _{E} \inf_{k \geq n} f_{k}$$
For all $j \geq n$ and all $x \in E$, we have
$$\begin{align}
\inf_{k \geq n} f_{k}(x) &\leq f_{j} (x) \\
\implies \int _{E} \inf_{k \geq n} f_{k} &\leq \int _{E} f_{j} \\
\implies \int _{E} \lim_{ n \to \infty } \inf f_{n} &= \lim_{ n \to \infty } \int _{E} (\inf_{k \geq n} f_{k}) \\
&\leq \lim_{ n \to \infty } \left[\inf_{j \geq n} \int _{E} f_{j}\right] \\
&= \lim_{ n \to \infty } \inf \int _{E}f_{n}
\end{align}$$
So we have "swapped the integral and inf" and we can plug this into the MCT to get the desired result.
$$\tag*{$\blacksquare$}$$