consistent estimation of generative model representations in the data kernel perspective space

[[paper-data]]
Formula

Notes

I believe this is the paper that says working in the DKPS is valid, but I would need to read it again to be sure.
Just kidding, I think it is actually Comparing Foundation Models using Data Kernels that does that

This has convergence of DKPS to some arbitrary deterministic representation of the space instead.

Theorem 1 here = Theorem 2 in Trosset and Priebe 24 Continuous Multidimensional Scaling

Theorem 2 here

Mentions

Mentions

const modules = await cJS()

const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  

const { dateTime } = await cJS()

return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}