Lecture 27

[[lecture-data]]

2024-11-04

Readings

5. Chapter 5

Corollary of Hahn-Banach

Let V,|||| be a NLS over K. If xV, then there exists fV such that ||f||V=1 and f(x)=||x||V

(see Hahn-Banach theorem)

Theorem

Let |||| be a norm on Kn. Then (||||D)D=||||.

Proof

Let nKn. Then (||x||D)D=maxyKn,||y||D=1|yx| by definition of the dual norm. But we have

\begin{aligned} \max_{y \in K^n, \lvert \lvert y \rvert \rvert^D=1} \lvert y^*x \rvert & \leq \max_{y \in K^n, \lvert \lvert y \rvert \rvert^D= 1 } \lvert \lvert x \rvert \rvert \cdot \lvert \lvert y \rvert \rvert { #D} \\ &= \lvert \lvert x \rvert \rvert \\ &\text{ by H-B }, \exists y \in K^n, \lvert \lvert y \rvert \rvert { #D} = 1, y^*x = \lvert \lvert x \rvert \rvert \\ \implies \max_{y \in K^n, \lvert \lvert y \rvert \rvert^D=1} \lvert y^*x \rvert &= \max_{y \in K^n, \lvert \lvert y \rvert \rvert^D= 1 } \lvert \lvert x \rvert \rvert \cdot \lvert \lvert y \rvert \rvert { #D}

\end{aligned}$$
(by Hahn-Banach theorem above)

(see the dual of the dual norm is the original norm)

Theorem

Let |||| be a norm on Kn. For all AMn(K), ||A||||||,||||=||A||||||D,||||D

Proof

By definition, we have

\begin{aligned} \lvert \lvert A^* \rvert \rvert_{\lvert \lvert \cdot \rvert \rvert^D, \lvert \lvert \cdot \rvert \rvert^D} &= \max_{x \in \lvert \lvert x \rvert \rvert^D = 1} \lvert \lvert A^*x \rvert \rvert^D \\ &= \max_{x : \lvert \lvert x \rvert \rvert { #D} = 1} [\max_{y: \lvert \lvert y \rvert \rvert =1} \lvert (A^*x)^*y \rvert ] \\ &= \max_{y: \lvert \lvert y \rvert \rvert =1} \max_{x : \lvert \lvert x \rvert \rvert { #D} = 1} \lvert (Ay)^*x \rvert \\ &= \max_{y: \lvert \lvert y \rvert \rvert =1} (\lvert \lvert Ay \rvert \rvert { #D} )^D \;\;\;(*) \\ & \max_{y : \lvert \lvert y \rvert \rvert =1} \lvert \lvert Ay \rvert \rvert \\ &= \lvert \lvert A \rvert \rvert _{\lvert \lvert \cdot \rvert \rvert, \lvert \lvert \cdot \rvert \rvert } \end{aligned}
Matrix Norm

A norm |||| on Mn(K) over K is a matrix norm if for all A,BMn we have

||AB||||A||||B||

(this condition is called submultiplicity)

If, in particular, |||| is any norm on Kn and matrices in Mn are Kn,||||Kn,||||, then the operator norm induced by that vector norm ||||||||,|||| is an induced matrix norm. (We have already shown this)

Example

||A||2,2, ||A||1,1,||A||,

Where did we already show this? We showed that T:UV,S:VW satisfies

||ST||||S||||T||

(see matrix norm)

Exercise

  1. ||||1 is a matrix norm ie NTS ||AB||1||A||1||B||1
  2. ||||F is a matrix norm (frobenius norm)
  3. |||| is NOT a matrix norm

counterexample for (3)

Consider A=B= matrix of all 1s. Then AB is the matrix of all 2s.

Relationship between norms on square matrices

induced matrix norms matrix norms Norms on Mn(K)

  • If we can prove convergence for general norm on matrices, then we also have convergence for matrix norms and induced matrix norms
Theorem

Suppose |||| is a matrix norm on Mn. Then for all AMn, we have ρ(A)||A||.

Proof

If the norm is an induced norm, then the result is trivial:
||A||=maxx||A||||x||=λmax
(we simply choose some norm 1 eigenvector of A with the maximum eigenvalue).

For any matrix norm, we let x be an eigenvector associated with λ an eigenvalue of maximum modulus. Set B to be the n×n matrix with x as each column. Then

||AB||=||Ax|Ax||Ax||=||λB||||A||||B||

Since x0 this implies that B0||B||0. Thus we have that

ρ(A)=|λ|||A||

(see matrix norms are bounded below by the spectral radius)

Preview: we will see next time that inf|||| matrix norm||A||=ρ(A)