sets of measure zero do not affect the integral

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1214378)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Theorem

If {fn}n is a sequence in L+(E) such that f1(x)f2(x) for almost all xE and

(){f1(x)f2(x)f3(x)limnfn(x)=f(x)

Then

Ef=limnEfn
Proof

Let

F={xE|() holds}

Then m(EF)=0 by assumption. Thus fχFf=0 a.e. and fnχFfn=0 a.e. also. Then the Monotone Convergence Theorem says

Ef=EfχF=Ff=limnFfn

Where the first equality holds since function relations almost everywhere hold in the integral and the last holds by the Monotone Convergence Theorem. This then becomes

limnFfn=limnEfn

Because m(EF)=0 and so any integral over the region is 0.

ie, sets of measure zero do not affect the Lebesgue Integral.

References

References

See Also

Mentions

Mentions

File Last Modified
Functional Analysis Lecture 11 2025-07-15

Created 2025-07-14 Last Modified 2025-07-14