Parseval's identity

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1214378)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Theorem (Parseval's Identity)

Let H be a Hilbert space and let {en} be a countable orthonormal basis of H. Then for all uH,

\sum_{n} \lvert \langle u, e_{n} \rangle \rvert { #2} = \lvert \lvert u \rvert \rvert { #2}

(in Bessel's inequality, we only had )

Proof

We know that

u=nu,enen

from all elements of hilbert spaces with orthonormal bases can be written as sums of the basis elements. If the sum over n is a finite sum, then we just expand the inner product ||u||2=u,u. Otherwise, by continuity of inner product, we have

\begin{align} \lvert \lvert u \rvert \rvert { #2} &= \lim_{ m \to \infty } \left\langle \sum_{n=1}^m \langle u, e_{n} \rangle e_{n}, \sum_{\ell=1}^m \langle u, e_{\ell} \rangle e_{\ell} \right\rangle \\ &= \lim_{ m \to \infty } \sum_{n, \ell = 1}^m\langle u, e_{n} \rangle \overline{\langle u, e_{\ell} \rangle } \langle e_{n, e_{\ell}} \rangle \\ (e_{n} \perp e_{\ell}, n \neq \ell) \implies&= \lim_{ m \to \infty } \sum_{n=1} \langle u, e_{n} \rangle \overline{\langle u, e_{n} \rangle } \\ &= \lim_{ m \to \infty } \sum_{n=1}^m \lvert \langle u, e_{n} \rangle \rvert { #2}

\end{align}$$

References

References

See Also

Mentions

Mentions

File Last Modified
Functional Analysis Lecture 15 2025-07-15
separable Hilbert spaces are bijective with ell-2 2025-07-15

Created 2025-07-15 Last Modified 2025-07-15