outer measure has countable subadditivity

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1214378)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Theorem

Let {An} be any countable collection of subsets of R. Then

m(nAn)nm(An)
Proof

If there is any n such that m(An)= (ie, if any of the An are unbounded) or nm(An)= then the inequality is true.

So consider only when all m(An)< and nm(An)<.

So let {Ink}kN be a collection of open intervals with

AnkNInkk=1(Ink)<m(An)+ϵ2n

Then we have

nNAnnN,kNInkm(nAn)n,k(Ink)=nk(Ink)<nm(An)+ϵ2n=[nm(An)]+ϵ

So letting ϵ0, we get the desired result.

References

References

See Also

Mentions

Mentions

File Last Modified
Functional Analysis Lecture 8 2025-07-14
Functional Analysis Lecture 6 2025-07-08
measurable sets form a sigma algebra 2025-07-08
measure satisfies countable additivity 2025-07-08
we can always find an open set with outer measure slightly more 2025-07-01

Created 2025-07-01 Last Modified 2025-07-08