normalized standard gaussian random vectors have the orthogonally invariant distribution on the unit sphere

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1182416)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Theorem

If xN(0,Id), then Law(x||x||)=Unif(Sd1)

Proof

The result follows immediately from standard gaussian random vectors are orthogonally invariant and the independence proposition for orthogonally invariant distribution on the unit sphere.

References

#flashcards/math/rmt

What is the important takeaway from the statement "normalized standard gaussian random vectors have the orthogonally invariant distribution on the unit sphere" ?
-?-
The direction of a gaussian random vector is uniformly distributed

References

See Also

Mentions

Mentions

File Last Modified
gaussian random vectors are approximately uniform on the hollow sphere 2025-09-11
Random Matrix Lecture 01 2025-09-11
Random Matrix Lecture 02 2025-09-11

{ .block-language-dataview}
Created 2025-09-05 ֍ Last Modified 2025-09-11