lebesgue integral of sum is sum of the integral

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1214378)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Theorem

If f,gL+(E) then

E(f+g)=Ef+Eg
Proof

Let {φn}n and {ψn}n be two sequences of simple functions such that
0φ1φ2f with φnf and
oψ1ψ2g with ψng pointwise then

0φ1+ψ1φ2+ψ2f+g

Where φn+ψnf+g pointwise and each φi+ψi are simple (since they are the sum of simple functions). So by the Monotone Convergence Theorem and linearity for simple functions we have

E(f+g)=limnE(φn+ψn)(linearity)=limnEφn+Eψn(MTC)=Ef+Eg

References

References

See Also

Mentions

Mentions

File Last Modified
fourier partial sums are given by the Dirichlet kernel 2025-07-15
Functional Analysis Lecture 11 2025-07-15
Functional Analysis Lecture 15 2025-07-15
integral of sum of a sequence is sum of the integrals 2025-07-14
Lebesgue Integral 2025-07-14

Created 2025-07-14 Last Modified 2025-07-14