integral is 0 if and only if the function is 0 almost everywhere

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1214378)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Theorem

Let fL+(E). Then Ef=0f=0 almost everywhere on E

Proof

()

If f=0 almost everywhere

0EfE0=0
()

Let

Fn={xE:f(x)>1n},F={xE:f(x)>0}

Then F=nFn and F1F2 and for all n

01nm(Fn)=Fn1nFnfEf=0

Then 1nm(Fn)=0m(Fn)=0 for all n. But then by continuity of measure, we have

m(F)=m(n=1Fn)=limnm(Fn)=0

References

References

See Also

Mentions

Mentions

File Last Modified
Functional Analysis Lecture 11 2025-07-15

Created 2025-07-14 Last Modified 2025-07-14