inner product

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1182416)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Inner Product

An inner product on a vector space V over field K is a function ,:V×VK such that for all x,y,zV and all cK we have

  1. x,x is real, nonnegative. Also, x,x=0x=0
  2. x+y,z=x,z+y,z
  3. cx,z=cx,z (2 and 3 indicate that this is linear)
  4. x,z=z,x¯ (ie symmetric)

If all of these hold, then V is an inner product space.

Example

Cn over C.

  • Euclidean inner product: x,z:=zx
  • some AMn positive definite: x,zA:=zAx
    Note that the euclidean inner product is a special case of the second, where A is the identity!

Mentions

Mentions

File Last Modified
2025-01-27 graphs lecture 2 2025-02-12
2025-04-01 equivariant lecture 9 2025-04-01
additivity of inner products 2025-08-17
cauchy-schwarz theorem 2025-08-17
Functional Analysis Lecture 13 2025-07-25
inner products define norms 2025-08-17
interpretation of the symmetric graph laplacian 2025-08-17
Lecture 22 2025-08-17
Lecture 23 2025-08-17
Lecture 36 2025-08-17
self-adjoint 2025-03-31

{ .block-language-dataview}
Created 2025-09-04 ֍ Last Modified 2025-09-09