high probability bound on singular values of gaussian random matrix

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1182416)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

(all is with high probability)

Corollary

Let GRd×m be a Gaussian random matrix with dm. Then

P[m64dσd(G)σ1(G)m+32d]>12exp(d)
Important

ie all singular values are {m±O(d)}

Note

This is a good event; we want this to happen. And luckily, we have high probability for this event.

We showed the probability for this event already, so now, assuming the event happens, we just need to prove the bound.

Proof

Recall

First-order Taylor approximation (and concavity of ) yields

1+x1+x2for x01x1xfor 0x1

If the event for our high probability bound for operator norm of difference for Gaussian covariance matrix happens, then we have

||Δ||=||GGTmId||64dm

ie if the event happens, we have
(1)

σ1(G)=||G||=||GGT||()||mId||+||Δ||m+64dm=m1+64dm()m(1+642dm)=m+32d

Where

Then, for σd(G), we have a similar bound.

Note that if m64dm<0, then m64d<0 and the result follows. So suppose m64dm0.

(2)

σd(G)=λd(GGT)()λd(mId)||Δ||m64dm=m164dm()m(164dm)=m64d

Where

References

References

See Also

Mentions

Mentions

File Last Modified
Random Matrix Lecture 04 2025-09-09

{ .block-language-dataview}
Created 2025-09-05 ֍ Last Modified 2025-09-11