high probability bound for operator norm of difference for Gaussian covariance matrix

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1182416)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at eval (plugin:digitalgarden:90:61)

Theorem

Ford<m, let GN(0,1)d×m. Define Δ:=GGTmId. Then

\begin{align} \mathbb{P}[\lvert \lvert \Delta \rvert \rvert \geq 64\sqrt{ dm }] &\leq 2\exp(-d) \\ \text{and }\lvert \lvert G \rvert \rvert { #2} =\lvert \lvert GG^T \rvert \rvert &\leq m+{\cal O}(\sqrt{ dm }) \end{align}
Proof

Let ε:=14. Then we have:

  1. There exists an epsilon net X of Bd where
|X|(1+2ε)d=(1+214)d=9d
  1. We have the bound (from epsilon net restricted inner product bounds the operator norm)
||Δ||112ε||Δ||X=112(14)||Δ||X=2||Δ||X

So

\begin{align} \mathbb{P}[\lvert \lvert \Delta \rvert \rvert \geq t] &\leq \mathbb{P}\left[ \lvert \lvert \Delta \rvert \rvert _{{\cal X}} \geq \frac{t}{2} \right] \\ \text{union bound} \implies &\leq \sum_{x \in{\cal X}} \mathbb{P}\left[ \underbrace{\lvert x^T\Delta x \rvert}_{GG^T - mI_{d}} \geq \frac{t}{2} \right] \\ \text{Since } x \in {\cal X} \subseteq B^d &\text{ we know } \lvert \lvert x \rvert \rvert \leq 1. \text{ So let } \hat{x}:= \frac{x}{\lvert \lvert x \rvert \rvert} \in \mathbb{S}^{d-1}\\ \\ \implies&\leq \sum_{x \in {\cal X}} \mathbb{P}\left[ \lvert \hat{x}^T \Delta \hat{x} \rvert \geq \frac{t}{2} \right] \\ &= \sum_{x \in {\cal X}} \mathbb{P}_{G}\left[ \lvert\,\lvert \lvert \underbrace{G^T\hat{x}}_{\in \mathbb{R}^m,\, \text{Law}=N(0,I_{m})} \rvert \rvert^2 - m \,\rvert \geq \frac{t}{2} \right] \\ \text{Now let }g&=G^T\hat{x} \\ \implies &= \lvert {\cal X} \rvert \cdot \mathbb{P}_{g \sim N(0, I_{m})}\left[ \lvert\,\lvert \lvert g \rvert \rvert { #2} -m \,\rvert \geq \frac{t}{2} \right] \\ &\leq 9^d\cdot 2\exp\left( -\frac{1}{8}\min\left\{ \frac{t^2}{4m}, \frac{t}{2} \right\} \right) \\ &\leq 2\exp\left( 3d - \frac{1}{8} \min\left\{ \frac{C^2}{4}d, \underbrace{\frac{C}{2}\sqrt{ dm }}_{d\leq m \implies \sqrt{ dm } \geq d} \right\} \right) \\ [\text{set } t:= C\sqrt{ dm },\;9 \leq \exp(3)] \implies &\leq 2\exp\left( d\left[ 3- \underbrace{\min\left\{ \frac{C^2}{32}, \frac{C}{16} \right\}}_{C=64\to \min(>4, 4)} \right] \right) \\ (*) C:= 64 \to\quad&\leq 2 \exp(-d) \end{align}

For (), we want to pick C big enough that everything is negative.

Union Bound

the union bound is countable subadditivity or the fact that

P(iAi)iP(Ai)

References

References

See Also

Mentions

Mentions

const modules = await cJS()

const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  

const { dateTime } = await cJS()

return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}