high probability bound for operator norm of difference for Gaussian covariance matrix

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1182416)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Theorem

Ford<m, let GN(0,1)d×m. Define Δ:=GGTmId. Then

\begin{align} \mathbb{P}[\lvert \lvert \Delta \rvert \rvert \geq 64\sqrt{ dm }] &\leq 2\exp(-d) \\ \text{and }\lvert \lvert G \rvert \rvert { #2} =\lvert \lvert GG^T \rvert \rvert &\leq m+{\cal O}(\sqrt{ dm }) \end{align}
Proof

Let ε:=14. Then we have:

  1. There exists an epsilon net X of Bd where
|X|(1+2ε)d=(1+214)d=9d
  1. We have the bound (from epsilon net restricted inner product bounds the operator norm)
||Δ||112ε||Δ||X=112(14)||Δ||X=2||Δ||X

So

\begin{align} \mathbb{P}[\lvert \lvert \Delta \rvert \rvert \geq t] &\leq \mathbb{P}\left[ \lvert \lvert \Delta \rvert \rvert _{{\cal X}} \geq \frac{t}{2} \right] \\ \text{union bound} \implies &\leq \sum_{x \in{\cal X}} \mathbb{P}\left[ \underbrace{\lvert x^T\Delta x \rvert}_{GG^T - mI_{d}} \geq \frac{t}{2} \right] \\ \text{Since } x \in {\cal X} \subseteq B^d &\text{ we know } \lvert \lvert x \rvert \rvert \leq 1. \text{ So let } \hat{x}:= \frac{x}{\lvert \lvert x \rvert \rvert} \in \mathbb{S}^{d-1}\\ \\ \implies&\leq \sum_{x \in {\cal X}} \mathbb{P}\left[ \lvert \hat{x}^T \Delta \hat{x} \rvert \geq \frac{t}{2} \right] \\ &= \sum_{x \in {\cal X}} \mathbb{P}_{G}\left[ \lvert\,\lvert \lvert \underbrace{G^T\hat{x}}_{\in \mathbb{R}^m,\, \text{Law}=N(0,I_{m})} \rvert \rvert^2 - m \,\rvert \geq \frac{t}{2} \right] \\ \text{Now let }g&=G^T\hat{x} \\ \implies &= \lvert {\cal X} \rvert \cdot \mathbb{P}_{g \sim N(0, I_{m})}\left[ \lvert\,\lvert \lvert g \rvert \rvert { #2} -m \,\rvert \geq \frac{t}{2} \right] \\ &\leq 9^d\cdot 2\exp\left( -\frac{1}{8}\min\left\{ \frac{t^2}{4m}, \frac{t}{2} \right\} \right) \\ &\leq 2\exp\left( 3d - \frac{1}{8} \min\left\{ \frac{C^2}{4}d, \underbrace{\frac{C}{2}\sqrt{ dm }}_{d\leq m \implies \sqrt{ dm } \geq d} \right\} \right) \\ [\text{set } t:= C\sqrt{ dm },\;9 \leq \exp(3)] \implies &\leq 2\exp\left( d\left[ 3- \underbrace{\min\left\{ \frac{C^2}{32}, \frac{C}{16} \right\}}_{C=64\to \min(>4, 4)} \right] \right) \\ (*) C:= 64 \to\quad&\leq 2 \exp(-d) \end{align}

For (), we want to pick C big enough that everything is negative.

Union Bound

the union bound is countable subadditivity or the fact that

P(iAi)iP(Ai)

References

References

See Also

Mentions

Mentions

File Last Modified
dimension requirements for gaussian random matrix to be a restricted isometry with high probability 2025-09-10
high probability bound on singular values of gaussian random matrix 2025-09-05
Random Matrix Lecture 04 2025-09-09
Random Matrix Lecture 05 2025-09-11

{ .block-language-dataview}
Created 2025-09-04 ֍ Last Modified 2025-09-11