functions with finite integrals map a measure zero set to infinity

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1214378)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Theorem

Let fL+(E) and let Ef<. Then the set

F={xE:f(x)=}

must have measure 0.

Proof

We know for all nN we have

nχFfχF

So integrating both sides gives us

nm(F)EfχFEf

Thus for all n, we have m(F)1nEf. Taking n, we have m(F)=0.

References

References

See Also

Mentions

Mentions

File Last Modified
Functional Analysis Lecture 11 2025-07-15

Created 2025-07-14 Last Modified 2025-07-14