fourier partial sums are given by the Dirichlet kernel

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1214378)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Theorem

For all fL2([π,π]) and all NN{0},

SNf(x)=ππDN(xt)f(t)dxDN(x)={2N+12πx=0sin(N+12)x2πsinx2x0

The function DN is continuous and also smooth and is called the Dirichlet kernel.

ie the partial Fourier sum can be written as the integral of f with the Dirichlet kernel

Proof (warmup for some calculations)

For any fL2([π,π]), we know that

SNf(x)=|n|N(12πππf(t)eintdt)einx()=ππf(t)(12π|n|Nein(xt))DN(xt)dt

Where () is by linearity of the integral

DN(x)=12π|n|Neinx=12πeiNxn=02Neinx={12πeiNx[1ei(2N1)x1eix],eix1x02N+12π,x=0={12π[ei(N+1/2)xei(N+1/2)xeix/2eix/2],x02N+12π,x=0(sinx=eixeix2i)={sin(N+12)x2πsinx2,x02N+12π,x=0

Which gives us the desired result

References

References

See Also

Mentions

Mentions

File Last Modified
Functional Analysis Lecture 15 2025-07-15

Created 2025-07-15 Last Modified 2025-07-15