fourier functions form an orthonormal set

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1214378)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Proposition

The subset of functions {einx2π}nZ is an orthonormal subset of L2([π,π])

Note

if we don't like working with complex exponentials we can use

eix=cosx+isinx

And work out everything we need.

Proof

Note that

einx,eimx=ππeinxeimxdx=ππei(nm)xdx={2π,m=n1i(nm)ei(nm)x|ππ=0mn

Since the exponential is periodic in 2π. Normalizing by 2π yields

einx2π,eimx2π={1m=n0mn

Giving us our orthonormal set.

References

References

See Also

Mentions

Mentions

File Last Modified
Functional Analysis Lecture 15 2025-07-15

Created 2025-07-15 Last Modified 2025-07-15