Fatou's Lemma

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1214378)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Theorem (Fatou's Lemma)

Let {fn}n be a sequence in L+(E). Then

Elimninffn(x)dxlimninffn(x)dx
Recall

limninfan=supn1[infknak]

And the limninf function is defined pointwise

Proof

We have

limninffn(x)=supn1[infknfk(x)]=limn[infknfk(x)]

And since infk1fk(x)infk2fk by the MCT we have

Elimninffn=limnEinfknfk

For all jn and all xE, we have

infknfk(x)fj(x)EinfknfkEfjElimninffn=limnE(infknfk)limn[infjnEfj]=limninfEfn

So we have "swapped the integral and inf" and we can plug this into the MCT to get the desired result.

References

References

See Also

Mentions

Mentions

File Last Modified
Functional Analysis Lecture 11 2025-07-15
Functional Analysis Lecture 13 2025-07-08

Created 2025-07-14 Last Modified 2025-07-14