epsilon net restricted inner product bounds the operator norm

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1182416)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Lemma

If X is an epsilon net of Sd1 or Bd, then

||Δ||X||Δ||112ϵ||Δ||X

(if ϵ(0,12) for the second inequality)

Proof

The first inequality is immediate from the definition of the restricted inner product. So we prove only the second inequality:

Let xSd1 be such that |xTΔx|=||Δ|| and let xiX such that ||xxi||ϵ. Then

||Δ||X|xiTΔxi|=|(x+(xix))TΔ(x+(xix))|=|xTΔx|||Δ|||xTΔ(xix)|||x||||Δ||||xix||ϵ||Δ|||(xix)TΔxi|ϵ||Δ||(12ϵ)||Δ||
Note

++++ interpretation of special x

References

References

See Also

TODO

Mentions

Mentions

File Last Modified
high probability bound for operator norm of difference for Gaussian covariance matrix 2025-09-04
Random Matrix Lecture 04 2025-09-09

{ .block-language-dataview}
Created 2025-09-04 ֍ Last Modified 2025-09-11