dimension requirements for gaussian random matrix to be a restricted isometry with high probability

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1182416)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Theorem

Suppose k1 and δ(0,1) and d64klogmδ2. Let GN(0,1d)d×m. Then

P[G has (k,δ)-RIP]12mk

(We want to reduce the number of measurements required to ensure we can recover x from only seeing y=Gx)

Proof

Suppose S[m],|S|=k and xRm. Define

  1. x(S)Rk as the restriction to indices in S
  2. G(S)Rd×k be the restriction to columns with indices in S

If ||x||0k and all non-zero indices are in S, ie supp(x)S, then we have

Gx=G(S)x(S) and ||x||=||x(S)||

In this case, the (k,δ) RIP is equivalent to requiring that
(for all S[m] with |S|=k) we have

(1-\delta)\lvert \lvert x^{(S)} \rvert \rvert { #2} \leq \lvert \lvert G^{(S)}x^{(S)} \rvert \rvert { #2} \leq (1+\delta) \lvert \lvert x^{(S)} \rvert \rvert { #2}

Now, let x^(S):=x(S)||x(S)||. Then

δx^(S)(G(S)TG(S)Ik)x^(S)δ||G(S)TG(S)Ik||δ

So, applying the union bound, we can see

P[G not (k,δ)-RIP]UBS[m],|S|=kP[||G(S)TG(S)I+k||>δ]

Now, Law(G(S))=N(0,1d)d×m. So introduce HN(0,1)k×d. Then we have

P[G not (k,δ)-RIP](mk)P[||HHTdIk||>δd]()(mk)2exp(18min{δ2d24d,δd2})

Where we get () from the high probability bound for operator norm of difference for Gaussian covariance matrix we saw last time. And continuing the calculation, we see

P[G not (k,δ)-RIP]mk2exp(δ232d)=2exp(klogmδ232d)2exp(klogm)=2mk

References

References

See Also

Mentions

Mentions

File Last Modified
Random Matrix Lecture 05 2025-09-13

{ .block-language-dataview}
Created 2025-09-10 ֍ Last Modified 2025-09-18