desirable properties for measure

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1214378)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Define measure of subsets of R, which we will eventually call Lebesgue measure.

Properties we want for this idea

  1. m(E) is defined for all ER
  2. if I is an interval then m(E)=(I) the "length" of I
  3. If {En} is a (countable) collection of disjoint subsets of E such that E=nEn, then we want m(nEn)=m(E)
  4. Translation invariance. ie, if ER and xR, then m(x+E)=m({x+y|yE})=m(E)

SPOILER

Unfortunately, this is impossible. Such an m:P(R)[0,) does not exist.

References

References

See Also

Mentions

Mentions

File Last Modified
Functional Analysis Lecture 8 2025-07-14
lebesgue measurable 2025-07-14
measurable sets form a sigma algebra 2025-07-08

Created 2025-07-01 Last Modified 2025-07-08