corollary of Hahn-Banach

[[concept]]

[!themes] Topics

Evaluation Error: SyntaxError: Unexpected token '>'

at DataviewInlineApi.eval (plugin:dataview:19027:21)
at evalInContext (plugin:dataview:19028:7)
at asyncEvalInContext (plugin:dataview:19038:32)
at DataviewJSRenderer.render (plugin:dataview:19064:19)
at DataviewJSRenderer.onload (plugin:dataview:18606:14)
at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1214378)
at DataviewApi.executeJs (plugin:dataview:19607:18)
at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
at Generator.next (<anonymous>)
at fulfilled (plugin:digitalgarden:77:24)

Matrix Analysis

Corollary of Hahn-Banach

Let V,|||| be a NLS over K. If xV, then there exists fV such that ||f||V=1 and f(x)=||x||V

(without proof)

Functional Analysis

Theorem

if V is a normed space, then for all vV{0}, there exists fV such that

||f||=1f(v)=||v||
Proof

Define u:CvC as u(λv)=λ||v||. Then |u(t)|||t|| for all tCv and also u(v)=||v||. Thus, by the Hahn-Banach theorem, there exists some fV that extends u, ie f(v)=u(v)=||v|| . But then

Then
||f(t)||||t|| for all tV, ie

1=f(v||v||)||f||||f||=1

Thus we have found a linear functional as desired.

References

References

See Also

Mentions

Mentions

File Last Modified
Functional Analysis Lecture 6 2025-07-08
the functional to the double dual is isometric 2025-06-12

Created 2025-06-12 Last Modified 2025-07-01