[[concept]]
Let ⟨f,g⟩=∫−11f(x)g(x)11−x2dx
The Chebyshev Polynomials T0,T1,… are orthogonal with respect to the inner product ⟨⋅,⋅⟩.
∫−11Tn(x)Tm(x)11−x2dx⟹x=cosθ,dxdθ=sinθ=∫π2πTn(cosθ)Tm(cosθ)dθsinθ1−cos2θ=∫π2πcos(nθ)cos(mθ)dθ since Tn=cos(nθ)=∫π2πeinθ+e−inθ2+eimθ+e−imθ2dθ=14∫π2πeinθ+e−inθ+eimθ+e−imθdθ={14∫π2π4dθ=θ|π2π=π if n=m=014∫π2π2dθ+14∫π2π2cos((n+m)θ)dθ=π2+0=π2 if n=m≠014∫π2π2cos((n+m)θ)+2cos((n−m)θ)dθ=0 if n≠m