chebyshev polynomials are orthogonal

[[concept]]
Theorem

Let f,g=11f(x)g(x)11x2dx

The Chebyshev Polynomials T0,T1, are orthogonal with respect to the inner product ,.

Proof

11Tn(x)Tm(x)11x2dxx=cosθ,dxdθ=sinθ=π2πTn(cosθ)Tm(cosθ)dθsinθ1cos2θ=π2πcos(nθ)cos(mθ)dθ since Tn=cos(nθ)=π2πeinθ+einθ2+eimθ+eimθ2dθ=14π2πeinθ+einθ+eimθ+eimθdθ={14π2π4dθ=θ|π2π=π if n=m=014π2π2dθ+14π2π2cos((n+m)θ)dθ=π2+0=π2 if n=m014π2π2cos((n+m)θ)+2cos((nm)θ)dθ=0 if nm

Mentions

File
ChebNet
2025-02-17 graphs lecture 8