[[lecture-data]]Info
let current = dv.current(); let previous = current.previous_lecture; // get notes with this as the previous let pages = dv.pages("") .where(p => p.previous_lecture) .where(p => String(p.previous_lecture) .includes(dv.current().file.link)); let output = `:LiArrowBigLeftDash: ${previous || "No Previous Lecture"} | `; if (pages.length > 0) { output += pages .map(p => p.file.link).join(", "); } else { output += 'No Next Lecture' } output += ' :LiArrowBigRightDash:' dv.el('div', output)
Class Notes
Summary
- Variance inequalities for random matrices
- Efron-Stein
- bounded differences
- Pointcare inquality
7. Non-Asymptotic RMT
Previously, we saw that
- as ie
- and
Next,
-
- we want a concentration inequality
Example
We want something of the form
Note
This is bound by the geometric / epsilon net method The true value
\mathbb{P}\left[\lvert \lvert X \rvert \rvert \geq t\right] &= \mathbb{P}\left[\max_{\lvert \lvert v \rvert \rvert \leq 1} \left\lvert v^{\intercal}Xv \right\rvert \geq t\right] \\ &\leq \mathbb{P}\left[ \max_{v \in {\cal \underbrace{ X }_{\varepsilon \text{-net} }}} \underbrace{ \left\lvert v^{\intercal}Xv \right\rvert }_{ {{\cal N}(0,2)} } \geq t(1-2\varepsilon) \right] \\ &\leq \underbrace{ \lvert {\cal X} \rvert }_{ \leq \left( 1+\frac{2}{\varepsilon} \right)^d } \,\, \mathbb{P}[\lvert {\cal N}(0,2) \rvert \geq t(1-2\varepsilon)] \\ \left( \varepsilon=\frac{1}{4} \right) \implies&\leq 2 \cdot 9^d \exp\left( -\frac{t^2}{16} \right) \\ &\lesssim \exp(Cd - ct^2) \\ \implies \mathbb{P}\left[ \lvert \lvert X^{(d)} \rvert \rvert \geq(10+t)\sqrt{ d }\right] &\leq \exp(-c'dt^2) \end{align}$$
(page 111 of Last Year’s Notes)
Principles of Concentration Inequality
First, we want it to be possible to bound without knowing
Example
and or
Second, we expect to concentrate near if
- the are weakly dependent (e.g. independent)
- is weakly sensitive to inputs
Our Goals:
- Prove bounds on under the above conditions for concentration
- Consider “RMT choices” of (as in the example above)