Lecture 09

[[lecture-data]]

2024-09-16

Readings

  • a
 

2. Chapter 2

Note

Suppose I have two block matrices

\begin{bmatrix} 0 & * \ 0 & T \end{bmatrix} \begin{bmatrix} D_{1} & * \ 0 & D_{2} \end{bmatrix} = \begin{bmatrix} 0 & | \begin{bmatrix} 0 \ \vdots \ 0 \end{bmatrix} & * \ 0 & | \begin{bmatrix} 0 \ \vdots \ 0 \end{bmatrix} & * \ \end{bmatrix} = \begin{bmatrix} 0 & * \ 0 & T_{*} \end{bmatrix}$$

Where is upper triangular and each is diagonal. Then the resulting matrix is with also upper triangular.

Cayley-Hamilton

Let . Then

Note

This is a homework problem for diagonalizable matrices, but you are going to do it using the tools that you already have.

(see Cayley-Hamilton)

where is unitary and upper triangular per Schur's theorem. Say that we have characteristic polynomial

Let

Such that . Now, we have from our definition of the matrix polynomial

p_{A}(A) &= Up_{A}(T) U^* \ &= U[(T-\lambda_{1}I)(T-\lambda_{2}I)\dots(T-\lambda_{n}I)]U^* \ &= U \begin{bmatrix} 0 & * & * \ 0 & * & * \ 0 & 0 & \ddots \end{bmatrix}

\begin{bmatrix}* & * & * \ 0 & 0 & * \ 0 & 0 & \ddots \end{bmatrix} \begin{bmatrix}* & * & * \ 0 & \ddots & * \ 0 & 0 & 0 \end{bmatrix}U^* \ &= U [0] U^* \ &= 0 \end{aligned}$$

Corrolary

Suppose is invertible and Then

invertible and . By Cayley-Hamilton, we have

A[A^{n-1}+a_{n-1}A^{n-2}+a_{n-2}A^{n-3}+\dots+a_{1}I] &= -a_{0}I \ A\left[ \frac{1}{-a_{0}} [A^{n-1}+a_{n-1}A^{n-2}+a_{n-2}A^{n-3}+\dots+a_{1}I] \right] &= I \ \implies \left[ \frac{1}{-a_{0}} [A^{n-1}+a_{n-1}A^{n-2}+a_{n-2}A^{n-3}+\dots+a_{1}I] \right] &= A^{-1} \end{aligned}$$

(see matrices are polynomials of their inverses)

Theorem

Suppose . Then , there exists invertible and diagonal, and with such that

is almost similar to a diagonal matrix”

where unitary, upper triangular per Schur. For all , we can define

Let

\delta^{-1} & 0 & \dots & 0 \ 0 & \delta^{-2} & \ddots & \vdots \ \vdots & \ddots & \ddots & 0 \ 0 & \dots & 0 & \delta^{-n} \end{bmatrix} T \begin{bmatrix} \delta^{1} & 0 & \dots & 0 \ 0 & \delta^{2} & \ddots & \vdots \ \vdots & \ddots & \ddots & 0 \ 0 & \dots & 0 & \delta^{n} \end{bmatrix}$$

and will have th entry equal to

A &= UTU^* \ &= UITIU^* \ &= U\begin{bmatrix} \delta^{-1} & 0 & \dots & 0 \ 0 & \delta^{-2} & \ddots & \vdots \ \vdots & \ddots & \ddots & 0 \ 0 & \dots & 0 & \delta^{-n} \end{bmatrix}\begin{bmatrix} \delta^{1} & 0 & \dots & 0 \ 0 & \delta^{2} & \ddots & \vdots \ \vdots & \ddots & \ddots & 0 \ 0 & \dots & 0 & \delta^{n} \end{bmatrix}T\begin{bmatrix} \delta^{-1} & 0 & \dots & 0 \ 0 & \delta^{-2} & \ddots & \vdots \ \vdots & \ddots & \ddots & 0 \ 0 & \dots & 0 & \delta^{-n} \end{bmatrix}\begin{bmatrix} \delta^{1} & 0 & \dots & 0 \ 0 & \delta^{2} & \ddots & \vdots \ \vdots & \ddots & \ddots & 0 \ 0 & \dots & 0 & \delta^{n} \end{bmatrix}U^* \ &= U \begin{bmatrix} \delta^{-1} & 0 & \dots & 0 \ 0 & \delta^{-2} & \ddots & \vdots \ \vdots & \ddots & \ddots & 0 \ 0 & \dots & 0 & \delta^{-n} \end{bmatrix} Q \begin{bmatrix} \delta^{1} & 0 & \dots & 0 \ 0 & \delta^{2} & \ddots & \vdots \ \vdots & \ddots & \ddots & 0 \ 0 & \dots & 0 & \delta^{n} \end{bmatrix} U^* \ &= S Q S^{-1} \end{aligned}$$

Where Note that Which is what was to be shown.

(see matrices are almost similar to diagonal matrices)

Theorem

Let . Then for all , there exists such that and is diagonalizable

“every matrix is almost diagonalizable”

Caution

This is similar to the last result, but NOT THE SAME.

by Schur. Then there exists a diagonal matrix such that and has distinct diagonals. Then

Let

A + UDU^* &= UTU^* + UDU^* \ &= UTU^* + UDU^* \ &= U(T+D)U^* \ \end{aligned}$$

and this has all eigenvalues distinct by construction, and thus is diagonalizable! So let . Then since is unitary

(see matrices are almost diagonalizable)

Last main topic of Chapter 2: Normal Matrices

Normal Matrices

is normal precisely when

Example

  1. diagonal matrices
  2. hermitian matrices (duh)
  3. unitary matrices

(see normal matrix)

Lemma

Let be upper triangular. Then is normal if and only if is diagonal.

Proof (informal) is normal upper triangular. Then since it is normal.

Suppose

&= \begin{bmatrix} | & | & \dots & | \ c_{1} & c_{2} & \dots & c_{n} \ | & | & \dots & |\end{bmatrix}\begin{bmatrix} - c_{1}^* -\ - c_{2}^-\ \vdots \ - c_{n}^ -\end{bmatrix} \end{aligned}$$

Where are increasing in “nonzero length”

Then the th diagonal of , call it where is the the COLUMN of

And the th diagonal of , call it where is the th ROW of (this is why we can do the multiplication like this to get a scalar)

So looking at , we know that the th column and the th row must have the same length.

  • So for the first column, the length will be the first element. Which means the other elements of the first row must be zero.
  • if we continue in the same manner through the rest of the matrix, we realize that the rest of the non-diagonal elements must be 0 also.

(see triangular matrices are normal iff diagonal)