const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
Theorem
for every A⊂R and ϵ>0, there exist an open set O such that A⊂O and
m∗(A)≤m∗(O)≤m∗(A)+ϵ
Proof
The result is obvious if m∗(A)=∞ (just take O=R), so we assume m∗(A)<∞.
Let {In} be a collection of open intervals that cover A and have total length at most m∗(A)+ϵ. Then O=⋃nIn is open and obviously A⊂O. Thus by subadditivity ( theorem from Lecture 6 )