x∈M
Then there exists a function u′:M′→C which is linear
(Where M′=M+Cx={t+ax:t∈M,a∈C} )
Such that u′∣M=u and for all t′∈M′ we have ∣u′(t′)∣≤C∣∣t′∣∣
Proof (of Lemma)
First, note that if t′∈M′(=M+Cx) then there exists unique t∈M and a∈C such that t′=t+ax.
(uniqueness) t+ax=t~+a~x⟹(a−a~)x=t~−t∈M. And if a−a~=0 then x∈M so we must have a=a~. But then we have t~=t, so t,a must be unique.
If
Thus, upon choosing λ∈C, the map
u′(t+ax)=u(t)+aλt∈M,a∈C
is well-defined on M′ and u′:M′→C is linear.
WLOG, suppose C=1. We want to choose λ∈C such that
∀t∈M,a∈C∣u′(t)+aλ∣≤∣∣t+aλ∣∣
Once λ is fixed, u′ is our continuous extension. When a=0, this inequality holds regardless of λ (because it holds on M). Thus we only need to choose λ for a=0. When a=0, we have
\lvert u'(t) + a\lambda \rvert \leq \lvert \lvert t + ax \rvert \rvert&\iff \left\lvert \left\lvert u\left( \frac{t}{-a} \right) -\lambda \right\rvert \right\rvert \leq \left\lvert \left\lvert \frac{t}{-a} -x \right\rvert \right\rvert \quad\forall t \in M \\
&\iff \lvert u(t) - \lambda \rvert \leq \lvert \lvert t - x \rvert \rvert \quad\forall t \in M
\end{align}$$
Since $\frac{t}{-a} \in M$. We first show there exists some $\alpha \in \mathbb{R}$ such that
$$\lvert w(t) - \alpha \rvert \leq \lvert \lvert t-x \rvert \rvert \quad \forall t \in M$$
where $w(t) = \frac{u(t) - \overline{u(t)}}{2} = \mathrm{Re}(u(t))$. Now, note that
$$\begin{align}
\lvert w(t) \rvert & = \lvert \mathrm{Re}(u(t)) \rvert \\
& \leq \lvert u(t) \rvert \\
& \leq \lvert \lvert t \rvert \rvert \\
\implies w(t_{1}) - w(t_{2}) & =w(t_{1}-t_{2}) \quad \forall t_{1},t_{2} \in M\\
& \leq \lvert w(t_{1}-t_{2}) \rvert \\
& \leq \lvert \lvert t_{1}-t_{2} \rvert \rvert \\
& \leq \lvert \lvert t_{1}-x \rvert \rvert + \lvert \lvert t_{2}-x \rvert \rvert\\
\implies w(t_{1}) - \lvert \lvert t_{1}-x \rvert \rvert & \leq w(t_{2}) + \lvert \lvert t_{2}-x \rvert \rvert \quad\forall t_{1},t_{2}\in M \\
\implies \sup_{t \in M} w(t) -\lvert \lvert t-x \rvert \rvert & \leq w(t_{2}) + \lvert \lvert t_{2} - x \rvert \rvert \quad \forall t_{2} \in M\\
\implies \sup_{t \in M} w(t) -\lvert \lvert t-x \rvert \rvert & \leq\inf_{t \in M} w(t) + \lvert \lvert t-x \rvert \rvert
\end{align}$$
So we can choose an $\alpha$ between these two quantities such that for all $t \in M$ we have
$$\begin{align}
w(t) - \lvert \lvert t-x \rvert \rvert &\leq \alpha &\leq w(t) + \lvert \lvert t-x \rvert \rvert \\
\implies - \lvert \lvert t-x \rvert \rvert &\leq \alpha - w(t) &\leq \lvert \lvert t-x \rvert \rvert \\
\implies \lvert w(t) - \alpha \rvert &\leq \lvert \lvert t-x \rvert \rvert
\end{align}$$
Using the same process for the imaginary part of $u(t)$ and repeating the argument with $ix$, we can find a $\lambda$ such that the desired bound holds.
> [!NOTE]
> To see this, we can verify that since the bound holds on both the real and imaginary components of $x$, it holds for all complex multiples of $x$
This defines our function
$$u'(t+ax) = u(t) + a\lambda$$
on all of $M +\mathbb{C}x$. Thus we are done.
$$\tag*{$\blacksquare$}$$