const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
Spectral Mapping Property
Let Sd×d be the space of symmetricd×d matrices. For all Q∈Sd×d, recall that we may write Q=U⊺ΛU, the eigendecomposition. A mapping f:Sd×d→Sd×d has the spectral mapping property if
Q↦f(Q):=U⊺diag(f(λ1(Q)),…,f(λd(Q)))U
ie, if the eigenvalues of are the eigenvalues of transformed by f.
NOTE
ie, such functions apply elementwise to the eigenvalues of Q.