inverse image of measurable functions of all borel sets are measurable

[[concept]]

Topics

const fieldName = "theme"; // Your field with links
const oldPrefix = "Thoughts/01 Themes/";
const newPrefix = "Digital Garden/Topics/";
 
const relatedLinks = dv.current()[fieldName];
 
if (Array.isArray(relatedLinks)) {
    // Map over the links, replace the path, and output only clickable links
    dv.el("span",
        relatedLinks
            .map(link => {
                if (link && link.path) {
                    let newPath = link.path.startsWith(oldPrefix)
                        ? link.path.replace(oldPrefix, newPrefix)
                        : link.path;
                    return dv.fileLink(newPath);
                }
            })
            .filter(Boolean).join(", ") 
	// Remove any undefined/null items
    );
} else {
    dv.el(dv.current().theme);
}
 
 

Theorem

If is measurable and a measurable function, then for all (the borel sigma algebra) we have is measurable.

Proof

If is measurable, then for all intervals we have

f^{-1}((a,b)) &= f^{-1}([-\infty,b)\cap(a, \infty]) \\ &= f^{-1} ([-\infty, b)) \cap f^{-1}((a, \infty]) \end{align}$$ Both sets of RHS are [[Concept Wiki/lebesgue measurable\|measurable]], and thus so is their intersection. So each open interval is measurable. Thus $f^{-1}(U)$ is measurable for all open $U \subset \mathbb{R}$. But then $${\cal A} = \{ F \subset \mathbb{R}: f^{-1} (F) \text{ is measurable} \}$$ is a [[Concept Wiki/sigma-algebra]] that contains all open sets, and thus ${\cal B}$ bust be a subset of ${\cal A}$. $$\tag*{$\blacksquare$}$$

Combined with the result that the inverse inverse image of infinity of measurable functions is measurable, this means that the inverse image of the borel sets of the extended reals are measurable for a measurable function!

References

References

See Also

Mentions

Mentions

const modules = await cJS()
 
const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  
const { dateTime } = await cJS()
 
return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}