\sigma_{1}(G) = \lvert \lvert G \rvert \rvert &= \sqrt{ \lvert \lvert GG^T \rvert \rvert } \\
(*)&\leq \sqrt{ \lvert \lvert mI_{d} \rvert \rvert + \lvert \lvert \Delta \rvert \rvert } \\
&\leq \sqrt{ m + 64\sqrt{ dm } } \\
&= \sqrt{ m }\sqrt{ 1 + 64\sqrt{ \frac{d}{m} } } \\
(**)&\leq\sqrt{ m }\left( 1+\frac{64}{2}\sqrt{ \frac{d}{m} } \right) \\
&= \sqrt{ m } + 32\sqrt{ d }
\end{align}$$
Where
- $(*)$ is from our [[Concept Wiki/Weyl's Theorem#special-case-for-random-matrix\|special case of Weyl]]
- $(**)$ is from the first of our two bounds above
Then, for $\sigma_{d}(G)$, we have a similar bound.
Note that if $m-64\sqrt{ dm } <0$, then $\sqrt{ m }-64\sqrt{ d }<0$ and the result follows. So suppose $m-64\sqrt{ dm } \geq 0$.
(2)
$$\begin{align}
\sigma_{d}(G) &= \sqrt{ \lambda_{d}(GG^T) } \\
(*)&\geq \sqrt{ \lambda_{d}(mI_{d}) - \lvert \lvert \Delta \rvert \rvert } \\
&\geq \sqrt{ m-64\sqrt{ dm } } \\
&= \sqrt{ m }\sqrt{ 1-64\sqrt{ \frac{d}{m} } } \\
(* *)&\geq \sqrt{ m }\left( 1-64 \sqrt{ \frac{d}{m} } \right) \\
&= \sqrt{ m } - 64\sqrt{ d }
\end{align}$$
Where
- $(*)$ is from our [[Concept Wiki/Weyl's Theorem#special-case-for-random-matrix\|special case of Weyl]]
- $(* *)$ is from the second of our two bounds above
$$\tag*{$\blacksquare$}$$