fourier partial sums are given by the Dirichlet kernel

[[concept]]

Topics

const fieldName = "theme"; // Your field with links
const oldPrefix = "Thoughts/01 Themes/";
const newPrefix = "Digital Garden/Topics/";
 
const relatedLinks = dv.current()[fieldName];
 
if (Array.isArray(relatedLinks)) {
    // Map over the links, replace the path, and output only clickable links
    dv.el("span",
        relatedLinks
            .map(link => {
                if (link && link.path) {
                    let newPath = link.path.startsWith(oldPrefix)
                        ? link.path.replace(oldPrefix, newPrefix)
                        : link.path;
                    return dv.fileLink(newPath);
                }
            })
            .filter(Boolean).join(", ") 
	// Remove any undefined/null items
    );
} else {
    dv.el(dv.current().theme);
}
 
 

Theorem

For all and all ,

S_{N}f(x) &= \int _{-\pi}^\pi D_{N}(x-t) f(t) \, dx \\ D_{N}(x) &= \begin{cases} \frac{2N+1}{2\pi} & x=0 \\ \frac{\sin\left( N+\frac{1}{2} \right)x}{2\pi \sin \frac{x}{2}} & x \neq 0 \end{cases} \end{align}$$ The function $D_{N}$ is [[Concept Wiki/continuous map\|continuous]] and also smooth and is called the **Dirichlet kernel**.

ie the partial Fourier sum can be written as the integral of with the Dirichlet kernel

Proof (warmup for some calculations)

For any , we know that

S_{N}f(x) &= \sum_{\lvert n \rvert \leq N} \left( \frac{1}{2\pi} \int _{-\pi}^\pi f(t) e^{- i n t} \, dt \right)e^{inx} \\ (*)&= \int _{-\pi}^\pi f(t) \underbrace{\left( \frac{1}{2\pi} \sum_{\lvert n \rvert \leq N} e^{i n (x-t)}\right)}_{D_{N}(x-t)}\, dt \\ \end{align}$$ Where $(*)$ is by [[Concept Wiki/lebesgue integral of sum is sum of the integral\|linearity of the integral]] $$\begin{align} D_{N}(x) &= \frac{1}{2\pi} \sum_{\lvert n \rvert \leq N} e^{i n x} \\ &= \frac{1}{2\pi} e^{-i N x} \sum_{n=0}^{2N} e^{i n x} \\ &= \begin{cases} \frac{1}{2\pi} e^{-i N x} \left[ \frac{1 - e^{i(2N-1)x}}{1-e^{ix}} \right] ,& e^{ix}\neq 1 \iff x\neq 0 \\ \frac{2N+1}{2\pi}, & x=0 \end{cases} \\ &= \begin{cases} \frac{1}{2\pi} \left[ \frac{e^{i(N + 1/2)x} - e^{i(N+1/2)x}}{e^{ix/2}-e^{-ix/2}} \right] ,& x\neq 0 \\ \frac{2N+1}{2\pi}, & x=0 \end{cases} \\ \left( \sin x = \frac{e^{ix} - e^{-ix}}{2i} \right) \implies&=\begin{cases} \frac{\sin\left( N+\frac{1}{2} \right)x}{2\pi \sin \frac{x}{2}},& x\neq 0 \\ \frac{2N+1}{2\pi}, & x=0 \end{cases} \end{align}$$ Which gives us the desired result $$\tag*{$\blacksquare$}$$

References

References

See Also

Mentions

Mentions

const modules = await cJS()
 
const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  
const { dateTime } = await cJS()
 
return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}